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i 
ABSTRACT 

The optimum thrust equations for two thrust pm- 

grams are presented. In the first program, the thrust vector 

i s  unconstrained; in the second program, the  thrust magni- 

tude i s  constrained to be a constant or zero along the 

trajectory. These programs are obtained by a consideration 

of a more general thrust program containing both modes of 

thrust operation. The optimization process i s  carried out 

for three separate criteria: maximum final vehicle mass 

for a given powerplant, minimum flight time, and a minimum 

value of the quantity a2 de,  where e l  is flight time and 

a is  thrust acceleration. This integral i s  a measure of the 

propellant requirement for a power-limited vehicle. 

'1 

0 

These two sets of equations have been applied to 

an inverse square central force field model. The problem 

of terminal conditions i s  discussed and the transversality 

relations for both flyby and rendezvous planetary missions 

are developed i n  three dimensions. For purposes of com- 

parison, the analytic solutions for these thrust programs i n  

a one-dimensional field-free model are presented. 

An iterative routine to solve the two-point boundary 

value problem has been coupled with these equations to 

obtain numerical solutions for specified end conditions and 

transversality expressions. A set  of two-dimensional tra- 

jectories from Earth to Mars is presented using these two 

thrust programs and the various optimization criteria. A 

summary of the effects of these two programs on vehicle 

performance i s  presented. 

vi 
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I .  INTRODUCTION 

For the past few years, mission-feasibility studies and trajectory analyses have been conducted to 

a s ses s  the payload capabilities of power-limited advanced-propulsion vehicles for various interplanetary 

missions. This  Report describes two types of optimum thrust programs for power-limited propulsion systems 

which are currently being used in  these studies. 

The power-limited propulsion system is constrained in the amount of kinetic power contained in the 

exhaust propellant. A rocket equation suitable for such a system i s  given by 

2 

2P 
- = -  1 + j1 n d t  

m l  mo 0 

. 
where mo and ml are the vehicle masses a t  the beginning and end, respectively, of the flight, a i s  the thrust 

acceleration, and P i s  the power expended in the rocket exhaust. The exhaust power i s  determined by the 

power rating of the powerplant carried by the vehicle and by the efficiency of conversion by the propulsion 

system, which i s  generally dependent on the exhaust velocity. The final vehicle mass depends on the value 

of this integral which, in turn, depends upon the flight time, the mission involved (namely, the specification 

of the kinematic conditions of the vehicle initially and terminally), the force field in which the vehicle 

travels, the nature of the thrust program used to accomplish this mission, and, finally, the engineering design 

of the propulsion system. 

For preliminary mission-feasibility studies, it i s  desirable to employ thrust programs which exclude 

the coinplexity imposed by the engiiieadng design but which bracket or iso!ate &st c lass  sf t r a j e c t d e s  a d  

vehicle performances which an actual vehicle should be capable of achieving. Two such thrust programs 

which serve this purpose are presented here. The first program allows a freely varying thrust magnitude and 

direction. The second program constrains the thrust magnitude to some constant value or zero but allows a 

freely varying thrust direction. 

These thrust programs have been optimized with respect to certain criteria. The variable thrust 

program has been optimized so that, for a particular mission, 

1 
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'1 J a2 dt  = minimum 
0 

'1 
This thrust program yields the absolute minimum that I 

0 

optimum thrust equations of power-limited flight (1, 2). Its  justification stems from the fact that, over a 

wide range of exhaust velocity, the exhaust power i s  nearly constant; although, this is generally not the 

case for low exhaust velocity. 

a2 dt may have and gives rise to the so-called 

The constant thrust program has been optimized with respect to three separate criteria. For com- 
'1 

parison with the variable thrust program, trajectories with minimum J a2 dt are generated. The constant 
0 

thrust program i s  constrained to constant thrust (and hence, constant exhaust velocity) or coast periods but 

minimizes this integral over the propulsion periods by optimum programming of the thrust vector and by 

optimum selection of the burning periods. The resulting value i s  always higher than the first case and, 

therefore, yields more conservative estimates of final vehicle m a s s .  For a particular mission, then, the 

generation of a pair of trajectories and vehicle performances using these two thrust programs i s  extremely 

valuable in determining mission feasibility, payload capability, trajectory design, e t  cetera. The second 

criterion yields trajectories with maximum final vehicle mass when a particular propulsion system i s  used by 

optimizing the constant exhaust velocity. The third criterion yields minimum-time trajectories. The 

differences among these types of trajectories will become clearer in the subsequent discussion. 

2 
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II. THRUST OPTIMIZATION 

The optimization of these thrust programs may be accomplished by calculus of variations methods in 

which the desired quantities are extremized subject to certain boundary conditions and certain constraints; 

namely, the equations of motion, the thrust-program constraints, et cetera. The constraining equations for 

this problem are 

; + Q U - a = O  

v - ; = o  

* P  
P + - a  P = o ,  p(0) = 1 

2 
C 

Equations (2) and (3) are the rocket equations of motion, where r is the position vector of the vehicle and U is 

the potential of the force field. The thrust acceleration is controlled by Equation 4, in which /.L is the normal- 

ized vehicle m a s s  and a is a normalized power parameter ranging between a value of 1 (maximum power) and 

0; i t  will be shown subsequently to  have a value of 1 during propulsion periods and 0 during coasting periods. 

The bounds on a may be expressed in  analytic form through the constraining relation 

P 

P 

2 Y - a ( l -  P a ) = O  P 

where Y is defined to be a rea l  variable. The quantity P is 2Pma,/m0 and i s ,  therefore, a constant determined 

by the engineering design. The quantity c is the rocket-exhaust velocity which is either continuously variable 

or constant, depending on the thrust program used. Equation (5) is the normalized differential form of 

Equation (1). 

3 
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Both the variable and the constant thrust programs may be solved by a consideration of a more 

general thrust program containing both of these modes, in which c is allowed to vary between two bwnds. A s  

before, these bounds may be stated through the expression 

2 rl - (Cmaz - c )  ( c  - C m i n )  = 0 (7) 

where 7 i s  defined to be a real variable. By solving the calculus of variations problem with this additional 

constraint, the optimum thrnst equations for the programs under discussion are obtained very simply by 

setting cmin = 0 and cmaz = m for the first case and by setting cmin = c = constant for the second case.  i 
m a x  

A Mayer formulation (3) has  been applied to this more general problem to obtain the optimum thrnst 

equations. The present treatment i s  similar to that followed by Miele (4, Lawden (S), Leitmann (61, and 

others. 

Let  q .(t) denote both the state and the control variables of the problem (j = 1, 2, , n). Let the I 
constraining relations be denoted by the functions 

Gi(q, ,  ir t )  = 0, i = 1, 2, , m < n 

and let  Afit) be a set of timedependent Lagrange multipliers. Let F be a function defined by 

F = Ai G ,  

(8) 

where the summation rule is employed. The quantity to be extremized is given by 1 [ q  .(t ), qi(O), t1I , that 

is, a function of the variables a t  the end points only. A s  necessary conditions for extremizing 1, the q .‘s 

must satisfy the Euler-Lagrange equations given by 

1 1  

1 

d 

dt -(;)-E= 0, 
j = 1, 2, , n (10) 

4 
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at all points along the trajectory except a t  corners; that is, points of discontinuity in one or more of the q .'s. 

Further, a t  such corners the Weierstrass-Erdrnann corner conditions must hold; namely, 
I 

is continuous j = 1, 2, - 0 .  

a F  - 

a F  . 
F - - q .  is continuous 

1 a i j  

(11) 

(12) 

If the constraining functions are not explicit functions of time, a first integral of the Euler-Lagrange equation 

is 

d F  . 
d q j  

F - - q .  = constant 
* I  (13) 

One additional tool from the calculus of variations will be  needed in dealing with comers; namely, the 

Weierstrass E-function. This  function yields a further necessary condition for the minimization of J by the 

inequality 

* * 
The q i  is an admissible value in the vicinity of q 

continuous variables, q .  may take on any value consistent with the specified bounds. 

For continuous variables, q = qi; however, for dis- i' i * 
I 

In three dimensions, Equations (2) through (7) form a system of ten constraining relations which must 

be included in the optimization process. There are, in this formulation, fourteen variables, of which v, r, and 

p are the state variables; a c, and a are the control variables with the latter being related through 
P' 

5 
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Equation (4); the quantities 

of motion contained in Equation (2); the functions G,, G,, G,, and G,, are Equations (4), (5), (6) ,  and (7), 

respectively . 

and y are auxiliary variables. In this problem, G,, G,, and G, are the equations 

The Euler-Lagrange equations for this problem are given by the relations 

v, r: k + ( X . V )  v u = o  

- (3 0: 

(15) 

(16) 

Y: Y A ,  = O  (20) 

where A,, A,, and h6 have been eliminated. The quantity k is the vector sum of the three orthogonal 

quantities A,, A,, and A,; thus, 

A = d m  = *A, 

6 

(22) 



JPL Technical Report No. 32-118 

I 

where the latter relation follows directly from Equation (16). Since U is assumed to be explicitly independent 

of time, these equations admit a first integral in the form 1 

C 

h v + v U - = constant = K, 

1 

An application of the Weierstrass-Erdmann comer conditions yields the following summary: 

1. Continuous variables: r, v, 1.1, A ,  h , X8, and K, 

Possibly discontinuous variables: a, p ,  c ,  77, a P' 2. y, A,, X 8, A,, and A,, 

In view of the above continuity considerations, the Weierstrass E-function becomes 

(23) 

Since this condition holds for all  admissible values of the pertinent variables, it holds, in particular, when 

a = a* and c = c . From this, the sign ambiguity appearing in Equation (22) is resolved and the positive 

sign is taken in order to satisfy Equation (24). The quantity A, is simply replaced by A. The function L ( t ) ,  

defined 

* 
P P  

is substituted in Equation (24) to yield 

a L a; L* P 

C C 

7 
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In this treatment, c is restricted to be either a continuous variable or a constant, as indicated in Equation (7). 

(The case of a discretely varying exhaust velocity is considered in the Appendix.) In this case, L( t )  is a 

continuous function and Equation (26) reduces to 

L(a -a;)  2 0 
P 

c on8 tant A =  
c 

8 

A 
A - c -  8 -  

which, when combined with Equations (5) and (17), yields 

constant 

P 
A, = 

However, Equation (19) then implies that 

c on8 tant A =  
c 

8 

(27) 

It will be shown subsequently that a is restricted to the values of 1 and 0. It follows from Equation (27) that P 

a = 1  
P 1. L > 0, 

a = o  
P 2. L < 0, 

thus, negative values of L ( t )  indicate coasting periods along the trajectory. Furthermore, the continuity of 

K ,  implies that a may change in value only a t  points where L( t )  is zero. P 

Equation (20) implies that either A, i s  zero (a variable) or y i s  zero (a = 1, 0). If A, is zero, 
P P 

Equation (19) implies 

(29) 
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Now, Equation (21) shows that A,, is zero in the variable thrust mode. When A,, is zero, Equation (18) is 

incompatible with Equation (31), from which i t  follows that Equation (31) can hold only during the constant 

thrust mode and therefore 

and since X / 2 p  is positive, the non-trivial conclusion is that L(t)  is positive and that, during the variable 

thrust mode (VTM), 

X = constant (32) 

The occurrence of a constant X is extremely unlikely in  most potential fields. The two- and three- 

dimensional harmonic oscillator potential i s  a noticeable exception. Lawden (7) has  recently discussed this 

singular case for a two-dimensional inverse square field. Corben (8) has  shown for this case that the 

direction of A relative to  the local horizontal is constrained to lie within approximately 35 deg of the local 

horizontal. The combination of these two constraints of constant X and bounded direction make Equation (32) 

inadmissable for the planetary rendezvous and flyby missions to be discussed subsequently. For this treat- 

ment, then, Equation (32) i s  considered inadmissable, and i t  follows that A, [and therefore, L ( t ) ]  

zero except a t  discrete points along the trajectory (and is, in fact, determined by Equation 19) and therefore, 

a is either 1 or zero, depending on the sign of L(t ) .  

is not 

P 

Consider now the transfer from one thrust mode to the other. If A,, is zero, it follows from 

Equation (18) that 

The quantity u i s  equal to 1 during the variable thrust mode. P 

9 
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which, in turn, yields for the exhaust velocity 

2 A  
c = -  

P A  

and for the thrust acceleration 

2 A  

where A i s  a constant determined by initial conditions. If A,, i s  not zero, 77 must be zero and the constant 

thrust mode (CTM) is operative. In this case,  L ( t )  i s  unrestricted and i s  given by Equation (25).  In numerical 

studies, i t  has been convenient to eliminate A, because of i t s  dependence on exhaust velocity. In the 

limiting case of infinite exhaust velocity (constant thrust acceleration), both Equations (17) and (25) encounter 

difficulty. This is obviated by employing a differential equation in L ( t )  in place of Equation (17). It is easily 

shown, for the constant thrust mode using Equations (3, (17), and (25) ,  that 

In summary, the continuity of K, requires that the transfer from one thrust mode to another occurs when the 

conditions 

A 
1. L = -  

2 P  

2. r ] = o  

10 
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occur simultaneously. A typical sequence is shown in the accompanying sketches (Sketch 1). The thrust 

acceleration in the CTM is given by 

and in the VTM by 

P X  a t -  
2 A  

i 

m i n  O r C r n w  Q =-- p a P h  c = c  
cp  A ’  

Sketch 1 

11 
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111. OPTIMIZATION CRITERIA 

As stated in the Introduction, the three criteria to be considered for the constant thrust program are 

(1) maximum final vehicle m a s s ,  (2) minimum I 
0 

m a s s .  The variable thrust program satisfies all three of these criteria simultaneously, if the exhaust power 

i s  constant. The constant thrust program, however, possesses coast periods, and by allocating different- 

length coast periods, one can obtain trajectories satisfying different criteria. 

a2 dt, and (3) minimum flight time for a given final vehicle 

From the calculus of variations, one has  certain transversality conditions which hold a t  end points of 

the trajectory. There may be boundary conditions which may be formulated in terms of the variables of the 

problem. Le t  these conditions be separable into initial and terminal conditions described by the functions 

and 

It may be shown that the transversality conditions for this formulation are 

and 

= o  (44) 

t = O  

where the K, and p, are Lagrange multiplier constants to be determined by simultaneous solution of 

Equations (42) through (45). The 8 quantities are arbitrary variations in the variables a t  the terminal point. 

If the value of a variable is specified at  an end point, the corresponding variation is zero. 

12 
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This i s  now applied to the criterion of maximum final m a s s  for fixed terminal time and end conditions. 

A t  a fixed terminal time, let 

and let all the remaining end conditions be independent of p .  An application of Equation (45) yields 

A8(0) = unspecified ( 47) 

(48) 

However, h, is a monotonic increasing function and, since p 1  is undetermined, i t  may be any negative 

constant. (This is consistent with the fact that p1p should be minimized in order to satisfy the Weierstrass 

E-function condition. In fact, the adoption of the positive sign in Equation (22) dictates a positive value for 

As.) I t  is observed that Equations (15) through (23) are homogeneous in the Lagrange multipliers; they may, 

therefore, be scaled without affecting the trajectory. Consequently, i t  is quite unnecessary, as some writers 

have done, to relate a particular Lagrange multiplier to some variable such as 1.1. For a particular choice of 

values of ,6 and c,  and for specified terminal conditions, the Euler-Lagrange equations guarantee an extrema1 

in p .  

However, for a particular P and for specified end conditions, there is an optimum choice of c which 

maximizes the final vehicle mass. Isolating this value of c may be accomplished by introducing a new 

constraining equation into the formulation, in the fonn 

and ignoring Equation (la), since c i s  a constant. The Euler-Lagrange equation for this expression is 

and the transversality equations yield 

All(0) = hl , ( t l )  = 0 

(50) 

( 51) 

13 
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A trajectory which terminates with a value of zero for A,, therefore possesses  an extremal in /-L with respect 

to c.  

Consider now the minimization of I 
0 

integral with respect to c,  since i t  may be written a s  

u2 dt. Satisfying Equation (51) also yields an extremal in this 

L J 

It i s  advantageous, however, to consider the minimization of this integral for a fixed c and fixed t l  by 

changing the initial thrust acceleration uo. This integral i s  fairly insensitive to the value chosen for c SO 

long a s  i t  is in the range typical of low-thrust propulsion systems; i t  approaches a limiting value for infinite 

exhaust velocity. Dividing by c to deal also with the limiting case, an a. will be found which extremizes the 

expression 

The approach i s  the same a s  followed in Equation (49); the additional constraining relation 

tio = O = G,,A,, 

i s  introduced with Equation (18) again being ignored. The resulting Euler-Lagrange equation i s  

A , , + a L = O  P 

An application of Equation (44) yields 

A12(0) = 0 

(54) 

At the terminal point, both u0 and p(tl) are unspecified and one has the boundary condition 

14 
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Equation (45) yields the expressions 

= o  4 "0 
A, - - 

P 2  

A,, + P I  (7) = 0 

which, upon eliminating p,, yields the transversality expression 

Eliminating A, and 1 - p ,  one obtains the function R ( t ) ,  given by 

t 
R ( t )  = A,, + (A -pL) J up dt 

0 

(59) 

(6 1) 

5 
which must be zero a t  t l  to guarantee an extrema1 value in the J 

0 
ation. It can be shown, for infinite exhaust velocity, that R ( t )  and - hll(t) are identical. 

a2 dt with respect to the initial acceler- 

For minimum time trajectories with specified end conditions and specified p(tl) or J 
0 

simply forces the propulsion system to operate over the whole trajectory. 

15 
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IV. THREE-DIMENSIONAL SPHERICAL COORDINATE REPRESENTATION 

For computational purposes, i t  i s  advantageous to employ a coordinate system which capitalizes on 

the symmetry properties of the problem. The computations have been performed in a two-body inverse square 

force field; the poteptial U is given by 

GM u 3 - -  
T 

tx3 e 

(62) 

Sketch 2 

The spherical coordinate system and the directions of the basis  vectors el, eo and e4 are shown in Sketch 2. 

In this representation, the Lagrange multiplier vector becomes 

X = erX1 + e B h 2  + e4h3  (6 3) 

and the thrust acceleration i s  

0 = erar + eoao + e a 4 4  (6 4) 

16 
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The kinematic constraining equations are 

.. h2 GM 
t - - a, = 0 r - -  

r 3 r  2 

h$ tan 4 
i, - + ra4 = 0 

2 r 

h g t r  2 4 = O  

where h i s  the angular momentum per unit vehicle mass and in vectorial form is  

h = eeh8 + e 4 h 4  

After some manipulation, i t  may be shown that Equation (15) becomes 

(65) 

(66) 

(68) 

(70) 

17 
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K ,  h+ sin + 
r2 cos2 + (A h) - = o  h+ 

r3 cos2 + F ( t )  - (74) 

The quantity F ( t )  is an auxiliary variable and is, essentially, one of the Lagrange multipliers. The constant, 

K,, i s  a constant of integration resulting from the cyclic nature of the variable 8. Equation (23) becomes 

The thrust acceleration, a, i s  given by Equations (40) and (41), depending on the thrust mode employed. 

Similarly, L ( t )  i s  obtained from either Equation (34) or (38) and the conditions for transferring thrust modes 

are given in Equation (39). The conditions for coasting follow from Equation (28). The vehicle m a s s  p i s  

obtained from Equation (51, and in the variable thrust mode, c is found from Equation (36). Finally, the 

quantities X,,, A,,, and R ( t )  are obtained from Equations (SO), (55), and (61), respectively. 

18 
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V. MISSIONS AND TERMINAL CONDITIONS 

The kinematic variables in most missions are specified a t  the initial point of a trajectory and, in a 

final trajectory design, the terminal values are usually specified. In a preliminary study, however, it is 

advantageous to allow certain terminal variables to be free in order to optimize the trajectory with respect to 

certain criteria such as payload capability, communication distance, error sensitivity, e t  cetera. The trans- 

versality conditions which result from certain unspecified terminal variables for various types of missions 

are presented. These missions include planetary rendezvous, planetary flyby, and orbital inclination changes. 

The initial conditions, as characterized by s ix  kinematic variables, are fixed. 

In planetary-rendezvous missions, s ix  terminal quantities must be specified. It is convenient to 

group these into five quantities which determine the shape and orientation of the terminal ellipse and one 

quantity indicating the rendezvous position on the ellipse. These quantities are the energy per unit m a s s ,  E; 

the angular momentum per unit m a s s ,  h; the orbital inclination, i ;  the argument of perigee, W ;  the longitude 

of the ascending node, ; and the angle from the line of nodes to the rendezvous point, $J (Sketch 3). 

Sketch 3 

These quantities are expressed in terms of the s ix  kinematic variables through the relations 

19 
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h2 = h$ + h z  (77) 

h4 cos 4 

h 
cos i = 9 O c i ~ n  (78) 

- h e  sin B - h+ sin C$ COS B 
sin R = 

h sin i 

- h e  cos 8 + h4 sin C$ sin 8 
cos n = 

h sin i 

O C R ( 2 7 r  

sin 4 COS C$ 
0 ( $ 5  2n sin I,!, = - , cos I,!, = 

s i n  i h sin i 

(80) 

(81) 

where e i s  the eccentricity of the ellipse. These s ix  expressions serve as boundary conditions at  the terminal 

point of the trajectory. For each one of these conditions which is left unspecified, there is a corresponding 

transversality expression a s  indicated by Equation (45). These transversality expressions yield extremals in 

the quantity to be optimized with respect to the unspecified boundary conditions. Both relative maxima and 

minima result from satisfying these conditions. 
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I 

The tabulation below l i s t s  several useful combinations of rendezvous terminal conditions and 

corresponding transversality relations obtained from an application of Equation (45) for a fixed t l .  

No. I 

E = E ,  

h = A, 

. .  
I . = )  

w = w, 

n=n 

+= V!Js 

I I  

E = E s  

h = h,  

, .  
k = L  

s w = w  

n = Q S  

= o  Kl h4J 

r2 cos + M + N +  

111 

E = E ,  

h = hS 

. .  
s L = L  

w = w  
S 

K ,  = O  

M + N = O  

IV 

E = E ,  

h = h, 

. .  
I = )  

fl = n, 

M = O  

= a  K l  h 4  N +  
r2 cos 

V 

E = E ,  

h = h ,  

i = i  
S 

K ,  = O  

M = O  

N = O  

The subscript, s, denotes a specified terminal value. The functions M and N are given by 

VI 

E = E ,  

h = h ,  

K ,  = O  

M = O  

X - h - 0  

F = O  

(83) 

and will be recognized a s  components oi Equation (75). Combination I11 is most nsefu! when the tmjeectcry 

commences from a circular orbit which relaxes the necessity of specifying a(t,).  Combinations IV and V 

apply to circular terminal orbits and to the case of orbital inclination changes. Combination VI applies also 

to the two-dimensional case where X - h and F ( t )  are zero over the trajectory. This particular case has  been 

noted by Blum (1) for the variable thrust program. The quantity K ,  i s  zero when neither 8 nor any quantity 

explicitly dependent on 8 i s  specified. 
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A, = 0 

For flyby trajectories, the terminal velocity vector is generally unspecified. The following tabulation 

lists several flyby-type terminal conditions and the corresponding transversality conditions. 

A,h+ - A,r; = 0 

1 r = r  

2 e = e, 

Vlll 

r = r  

e = e, 

F = O  

A, = O  

A , = O  

A, = O  

I X  

r = r  

K ,  = O  

F = O  

A ,  = O  

A , = O  

A , = O  

X 

r = r  

. .  
r = r  

K ,  = O  

F = O  

XI 

E = E ,  

K, = O  

F = O  

M = O  

X * h = O  
I 

Combination X applies to a “tangential flyby” and to such missions as a solar probe. Combination XI applies 

to the case of maximizing the terminal energy; the fifth and sixth conditions characterize the well-known fact 

that the terminal thrust vector i s  parallel to the velocity vector. 
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VI. ONE-DIMENSIONAL EXAMPLE 

A s  a simple example of the foregoing results, the one-dimensional rendezvous and flyby missions are 

considered in a field-free region. For the purpose of simplicity, the mass loss  of the vehicle is zero (/.A = 1). 

The boundary conditions are 

d o )  = 0 X( t l )  = 0, rendezvous 

The terminal velocity is unspecified in the flyby case. For this case, Equation (15) yields, after integration 

x = xo + x, (84) 

where L is a constant. For the variable thrust program, an application of Equations (2), (31, (41), and the 

above boundary condition yields 

[ 7 (I - :) , rendezvous 

(85) 

where, in the case of the flyby, the condition that A is zero at t l  has been applied. For these two cases, 

, rendezvous 
[ 12L2 

t ;  

3L2 
- 9 flyby I t : 

Jc1 a2 dt = 
0 

(86) 

In the constant thrust case, i t  i s  recalled that L is proportional to the time derivative of the magnitude 

of A ,  therefore 
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;-I A , A > O  : 
- A ,  A < o  

(87) 

from which i t  follows that there are, at most, two zero crossings of L.  Since z(0) is zero, the trajectory 

commences with a burning phase and therefore has, a t  most, one coast period. L e t  ta  denote the beginning of 

the coast period, and for the rendezvous case le t  t b  denote the second burn period in which, by Equation (87), 

the thrust i s  negative. An application of Equations (21, (3), (16), and the boundary conditions yield 

r"" , rendezvous 

tal  = I 
and for the rendezvous case 

From Equation (50), one finds that the necessary values for ta  so that A,, is zero at  t l  are 

- t , ,  rendezvous r; 

(88) 

With this value 

c l  J a2 = 
0 

, rendezvous 

(91) 

which is 12.5% larger than the variable thrust program. 
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The acceleration level corresponding to a minimum-time trajectory i s  obtained from equating to and 

tb  in the rendezvous case and equating ta and t l  for the flyby. In this case, 

la1 = 

and for this case 

0 

rendezvous 

fly by 

L2 
16 - , rendezvous 

t! 

L2 
4 - ? flyby 

5 

(92) 

(93) 

which is 33% larger than the variable thrust program and 18.5% higher than the value for the optimum coast 

trajectory. These examples, although trivial, do lend insie;bt into the more complicated problems of inter- 

planetary trajectories where similar characteristics are to be found. 
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VII. INTERPLANETARY TRAJECTORIES 

As an example of the application of this theory to mission feasibility studies, the results from an 

extensive se t  of rendezvous trajectories from Earth to Mars are presented. D. E. Richardson (JPL) has pm- 

gammed the spherical coordinate formulation of these equations for numerical solution on an IBM 7090 digital 

computer. In order to overcome the two-point boundary-value problem, this program has been coupled with an 

iterative routine to converge upon the specified terminal conditions. By this procedure, parametric analyses 

have been efficiently conducted through the large-scale production of interplanetary trajectories with wide 

ranges of mission conditions and flight times. 

In these examples, a two-dimensional inverse square force field model is employed. The departing 

orbit is circular and one astronomical unit from the Sun. The arrival orbit has the semi-major axis and the 

eccentricity of the Martian orbit. The terminal conditions are, therefore, specified values of energy and 

angular momentum; the transversality condition of M ( t l )  = 0 is specified (except in Figs. 8 and 9) and, in all 

trajectories, the polar angle 6 ( t l )  i s  unspecified and, consequently, K ,  i s  zero. Both the variable and the 

constant thrust programs have been used; unless otherwise noted, the exhaust velocity employed in the 

constant thrust program i n  50,000 m per sec. 

Figure 1 exhibits a 160-day rendezvous trajectory to Mars using the variable thrust program. The 

arrows indicate both the direction and the magnitude of the thrust acceleration. Figures 2 and 3 show constant 

thrust trajectories accomplishing the same mission using an optimum coast period and no coast period, re- 

spectively. The coast period shown in Fig. 2 h a s  been optimized so that I a dt  is a minimum, [ R ( t l )  = 01. 
0 

Figures 4, 5, and 6 show the thrust programs for these three trajectories. The quantity y is the angle between 

the thrust vector and  the radius vector and is therefore given by 

2 

A2 
t a n y =  - (94) 

The switching function for the optimum coast trajectory is also shown in Fig. 5. 

These three trajectory types have been run for different flight times ranging from 40 days to more 
t 1 

than 300 days. Figure 7 shows the variation of J 
0 

and the worst point on the orbit of Mars. For continuous thrust interplanetary trajectories, it is known (2,9 

a2 & flight time for rendezvous at  both the optimum 
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that the effect of the planetary orbital inclinations on the value of a2 dt or final vehicle m a s s  is quite 

small; in the case of Mars, the 1.O85 orbital inclination increases the value of s a 2  dt in three-dimensional 

variable thrust trajectories by less than 1%. Consequently, Fig. 7 yields a highly valid estimate of the pay- 

2 load capabilities of power-limited systems for Mars rendezvous missions. As stated previously, the s u dt 

is fairly insensitive to the exhaust velocity employed in typical cases, but i t  does become sensitive for 

extremely low values or short flight t imes.  The following tabulation compares this integral for exhaust 

velocities of 50,000 meters per s ee  and infinity (constant acceleration) for Mars optimum coast trajectories. 

0 

T 
day I 

50 

100 

150 

200 

250 

300 

Sa2 dt 

c = 50,000 
~ ~~~ 

556.03 

59.821 

15.263 

5.6225 

2.7279 

1.1380 

525.11 

59.250 

15.225 

5.6138 

2.7222 

1.1338 

Figures 8 and 9 show, for a 160-day flight, the variation of s a 2  dt and M ( t l )  with true anomaly 71 on 

the Mars orbit for the optimum-coast and minimum-time programs. The behavior of these quantities for the 

variable thrust propam is s i m i l a r  and is discussed in Reference 2. The values of true anomaly where 

M ( t l )  = 0 depend on the flight time (2,9), but, generally, the minimum point lies in the first and second 

quadrant. 

In Fig. 10, the variation of a2 dt and the corresponding coast period with initial thrust acceleration 

is shown. The transversality condition R (t,) is also plotted, and its zero crossing marks the minimum 

J 
0 

plish this mission and yields, of course, the minimum-time trajectory. The abrupt drop in J a2 dt  , with a 

small increase in ao, suggests the value of employing trajectories with a coast period. 

a2 dt. An initial acceleration of 0.0009008 m per see2 is the smallest value that may be used to accom- 
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Many of the curves presented here can be approximately reproduced using the simple one-dimensional 

analysis in See. VI. As examples, from Equations (88) and (89), one may obtain the expression 

4a0L 
f'' a2 dt = (95) 

-0 

(5 + /-) 
which, when plotted against ao, bears a striking resemblance to the analogous curve in Fig. 10. From the 

same equations, one obtains the coast time 

4L 
t C = t,-- 

"0 
(96) 

which is also similar to the tc  curve in Fig. 10. Furthermore, the Ja2 dt follows very closely a ti3 variation 

with flight time, and, for a given mission, the 'l a 2 dt values for the variable thrust program, optimum-coast 
0 

program and minimum-time programs are approximately in the ratio 1:1.13:1.33, as obtained in the one- 

dimensional analysis. 

Finally, Fig. 11 exhibits a case in which the criterion of maximum final vehicle m a s s  is employed. 

In this set of trajectories, the exhaust power i s  fixed and various values of the exhaust velocity are used to 

accomplish this mission. The resulting curves for p ,  A,, and t c  are presented. As before, the zero crossing 

of A,, marks the maximum value of p ;  therefore, setting A,, equal to zero as a terminal condition yields the 

optimum exhaust velocity to be employed for this mission. 

If payload maximization is the desired end, the procedure described in Fig. 11 i s  strictly the correct 

approach; however, these curves are strongly dependent on the value of 

procedure i s  dependent on the power and efficiency ratings of the particular propulsion system under consider- 

employed and, consequently, this 

ation. For parametric studies, the ', a 2 dt , because of i t s  near invariance to the propulsion system ratings, 
0 

is  of more utility. 

1 
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I 

NOMENCLATURE 

1 

A 

A Y  

Q 

B Y  

C 

E 

e 

Gi 

GM 

h 

i 

I 

K l  

K 2  

L 

m 

M 

N 

P 

Qi 

constant of integration 

initial boundary functions 

thrust acceleration vector 

terminal boundary functions 

exhaust velocity 

total energy per unit mass 

eccentricity 

basis  vectors in spherical coordinate system 

generalized integrand 

spherical coordinate Lagrange multiplier 

constraining functions 

gravitational coefficient of central body 

angular momentum per unit m a s s  

inclination 

generalized function to be extremized 

constant of integration 

constant of first integral of Euler equations 

distance (Sec. VI) 

switching function 

vehicle mass 

transversality function 

transversality function 

exhaust power 

generalized coordinates 
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NOMENCLATURE (Cont'd) 

r 

r 

R ( t )  

t 

tl 

ta 

t b  

U 

V 

a 
P 

P 

Y 

Y 

77 

77 

e 

K V  

hi 

CL 

P V  

4 

IC, 
0 

R 

position vector 

radial distance 

transversality function 

trajectory time 

flight time 

time of commencement of coast period 

time of commencement of second burn period 

potential function 

velocity vector 

normalized power parameter 

twice the ratio of maximum exhaust power to initial vehicle m a s s  

angle between thrust vector and radius vector, (Equation 94) 

auxiliary real variable 

auxiliary real variable 

true anomaly (Sec. VII) 

polar angle 

initial boundary Lagrange multiplier 

Lagrange mu1 tip1 iers 

normalized vehicle mass 

terminal boundary Lagange  multipliers 

1 ati tude 

position angle of ascending line of nodes 

argument of perigee 

longitude of ascending node 
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Fig. 1. Mars optimum rendezvous variable thrust trajectory; 
160-day flight time 

ON PERIHELION 

Fig. 2. Mars optimum rendezvous constant thrust trajectory; 160-day flight 
time, optimum coast; exhaust velocity = 50,000 m/sec 
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PERIHELION 

Fig. 3. Mars optimum rendezvous constant thrust trajectory; 160-day flight 
time, minimum time trajectory; exhaust velocity = 50,000 m/sec 

TIME, days 

Fig. 4. Thrust program for variable thrust trajectory 
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TIME, days 

Fig. 5. Thrust program and switching function for optimum coast trajectory 

140 16C 3 120 

TIME, days 

Fig. 6 .  Thrust program for minimum time trajectory 
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HELIOCENTRIC FLIGHT TIME 4, days 

'1 
Fig. 7.  Mars rendezvous trajectories; variation of J a2 dt with flight time 

0 
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Fig. 8. Mars 160-day constant thrust optimum coast trajectories, variation 

of t1 a2 dt with rendezvous point on Martian orbit 
0 

300 

200 

100 

Y 
0 2- 

8 

-100 

200 

m 

Fig. 9. Mars 160-day constant thrust minimum time trajectories; variation 

of I t ’  a2 dt with rendezvous point of Martian orbit 
0 
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0 

20 

40 

100 

I20 

140 

oo x lo6, m/sec 

Fig. 10. Mars 160-day constant thrust trajectories; variation of 
a2 dt, R ( t ) ,  and t ,  coast period with initid thrust 
acceleration; exhaust velocity = 50,000 m/sec 

0.88 

0.84 

0.82 

0. 8C 

a 0.78 

0.T6 

0.74 

0.72 

0.70 

E x IO-*, m/src 

6 160 

4 140 

2 120 

0 loo 

A h 

,2 ,= eo 
b 

,4 60 

.6 40 

-8 20 

Fig. 11. Mars 160-day constant thrust trajectories; variation of 
P ,  A,,, and t ,  coast period with exhaust velocity; 

p = 73.788,2/sec3 
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APPENDIX 

A Discretely Varying Thrust Program 

Suppose the exhaust velocity i s  constrained to discrete values 

max c = c 1  = Cmin’ c,, C3’ ... , c+ = c 

The Euler-Lagrange equations, etcetera, all still apply. However, it  remains to determine the conditions for 

changing the exhaust velocity discontinuously. The continuity of K, requires that u L / c  is continuous. L e t  

c -  and c +  be the exhaust velocities on the left-and right-hand side of a discontinuity, respectively, and thus 
P 

c -  = ci 

c +  = c i - l ,  o r c i + l  

Equation (12) requires that 

_ -  _ -  

and using Equation (25), the condition on L -  for a transition in c is 

and, on the right-hand side of the discontinuity, L becomes 

(A-2) 

(A-3) 
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In both cases, L i s  positive and a i s ,  therefore, unity, a s  has been implicitly assumed. Furthermore, these 
P 

conditions show that L cannot become negative until cmOx i s  reached. 

Equations (A-4) and (A-5) may be used to prove the continuity in c when changing thrust modes in the 

variable- and constant-thrust programs. 
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